

Early Aqua Results from DAO

Joanna Joiner, Don Frank, Emily Liu, Paul Poli

- Introduction
 - What is in our Aqua data set and why?
 - What is in our assimilation system?
 - How are we currently doing cloud detection?
- Observed minus Forecast (O-F) radiances
- Tuning with collocated radiosondes, analysis above (channels that don't see surface), DAO analysis over ocean downstream of data-rich areas for other channels
- Conclusions

Which data is DAO using?

- All 9 AIRS golfball pixels (other NWP centers are only getting center pixel)
- Every other golfball (may be decreased to 1 in 7), other centers also get every other
- Same 281 channels as NCEP
- DAO validation effort includes evaluation of level 2 data

Why did we request this data set?

- To perform cloud-clearing within our 1D variational assimilation scheme
 - New studies (McNally) show that meteorologicallysensitive areas often occur in cloudy areas. Fourrie showed sensitive areas occur under cloud-tops
 - Hope to show cloud- and land-affected data produces positive impact on NWP
- To improve cloud detection (on a channel by channel basis)
 - Allows for background/microwave-independent check for above-cloud channels (rank channels, then apply homogeity test downwards til reach cloud top)
 - Can average clear pixels for noise reduction
 - Need good estimate of NEDN

AIRS initial channel selection

- Our 1DVAR can use different RT codes for different channels (completely flexible)
- We currently support:
 - GLATOVS (Susskind et al): HIRS, MSU, SSU
 - MIT (Rosenkrantz): MSU, AMSU
 - OPTRAN (McMillin, van Delst, Kleespies): HIRS, MSU, AMSU, GOES, AIRS
 - HFFP (Wehr and Strow): HIRS
 - SARTA (Strow, Hannon; fast, approximate analytic Jacobian added by Joiner): AIRS

- Background window channel check (Derber and Wu) |O-F(HIRS 8, 18, 19)|<1 K sea, <3K land (for AIRS, pick clean window channels at similar frequencies)</p>
- Albedo check from VIS channel (TOVS) and frozen sea test (McMillin and Dean)
- Long-wave/short-wave consistency checks (retrieved surface skin from long-wave and short-wave must agree to within 1K)
- FOV homogeneity check on a channel-by-channel basis (if passes, average all FOVs)
- 1DVAR residual checks (longwave, shortwave, microwave window channels must be fit to within expected errors).
- ~10% found clear, ~1% clear in all 3 FOVs

Observed minus forecast radiances

- DAO model top at 0.01 hPa
- Off-line ozone assimilation system (assimilate SBUV) provides 3D ozone that agrees very well with ozone sondes (not used) and TOMS
- Surface skin temperature bias-correction and analysis scheme (uses TOVS and soon surface station data) presents more accurate surface skin temperatures than free-running land surface model
- Also have the ability to compute O-F from hybrid NCEP (troposphere, lower stratopshere, skin temperature), DAO (stratosphere, mesosphere + ozone) fields

- Variational cloud-clearing (Joiner and Rokke, 2000); eigen-vector FOV (AIRS ATBD);
- Use land, solar-affected data, CERES emissivity data set; FASTEM, Masuda over ocean
- Can turn cloud-clearing/land-affected on/off; relaxes to approaches similar to "clear-channel"
- Physically-based systematic error correction (tuning), use optical depth sensitivty as predictor
- Runs in GEOS-DAS and Finite-volume DAS (FVDAS), "first look" ~1 day and "late-look"weeks after data time

Channel 236 (2104) 2382.7 cm⁻¹

Clouds detected and removed

Channel 237 (2106) 2384.7 cm⁻¹

Clouds detected and removed

Channels 230, 231 (2248.1, 2251.95 cm⁻¹)

Channels 34, 38 (667.63, 668.64cm⁻¹)

Channels 177, 199 (1356.94, 1520.67 cm⁻¹)

AMSU 5 untuned (NOAA-16 and Aqua)

AMSU 14, 13(Aqua and NOAA 16)

Aerosol and Emissivity Effects

Aerosol Effects

- Weaver, Joiner, and Ginoux have a JGR paper (recently accepted)
 - Added aerosol module to GLATOVS
 - Simulated impact of desert dust type aerosol on TOVS channels
 - Found correlation between O-F radiances over ocean and aerosol column (from GOCART model w/ DAO winds) that was partially correctable
 - Maximum impact around ozone band
 - Will affect all channels that see aerosol-loaded altitudes

Using model-simulated aerosol

Top: O-F HIRS 8 no dust in calculations

Bottom: O-F HIRS 8 dust from transport model included in radiative transfer

Tuning with radiosondes

Timing and other Issues

- SARTA fast Jacobian about twice as fast as OPTRAN Jacobian
- ◆ 1DVAR with 178 channels runs in ~12 minutes on 16 CPU's on SGI O2K for 6 hours worth of data (NOAA 16 ATOVS runs in ~3 mins.). Scales with #CPU.
- 1DVAR finds ~11% clear in 1 pixel, ~1% clear in all 9 pixels (similar to NOAA 16)

Conclusions

- Focus-day has been a valuable data set for early diagnostics and testing
 - O-F radiance provide useful tool for determining channels affected by non-LTE, aerosol
 - O-Fs also show model problems such as mesospheric temperature bias over Antarctica
 - Has enabled us to tune 1DVAR
- DAO is ready for more data and updated RT
 - need several months of data for definitive impact studies
- Would like to have updated estimates of radiance errors (NEDT, forward model errors)
- Would very much like to have sidelobe-corrected AMSU